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Abstract—An effective approach for unbalanced three-phase 

distribution power flow solutions is proposed in this paper. The 
special topological characteristics of distribution networks have been 
fully utilized to make the direct solution possible. Two matrices—the 
bus-injection to branch-current matrix and the branch-current to bus-
voltage matrix— and a simple matrix multiplication are used to 
obtain power flow solutions. Due to the distinctive solution 
techniques of the proposed method, the time-consuming LU 
decomposition and forward/backward substitution of the Jacobian 
matrix or admittance matrix required in the traditional power flow 
methods are no longer necessary. Therefore, the proposed method is 
robust and time-efficient. Test results demonstrate the validity of the 
proposed method. The proposed method shows great potential to be 
used in distribution automation applications. 
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I.  INTRODUCTION 

S an important tool and the foundation of Distribution 
Management System (DMS), power flow calculation 

problem has been paid more and more attention. Many 
programs of real-time applications in the area of distribution 
automation , such as network optimization planning, 
switching, state estimation, and so forth, require a robust and 
efficient power flow method [1]–[3]. Such a power flow 
method must be able to model the special features of 
distribution systems in sufficient detail. The well-known 
characteristics of an electric distribution system are radial; 
multiphase and unbalanced operation; unbalanced distributed 
load; extremely large number of branches and nodes; wide-
ranging resistance and reactance values. Those features cause 
the traditional power flow methods used in transmission 
systems, such as the Gauss-Seidel and Newton-Raphson 
techniques, to fail to meet the requirements in both 
performance and robustness aspects in the distribution system 
applications. In particular, the assumptions necessary for the 
simplifications used in the standard fast-decoupled Newton-
Raphson method [4] often are not valid in distribution 
systems. Therefore, a novel power flow algorithm for 
distribution systems is desired. To qualify for a good 
distribution power flow algorithm, all of the characteristics 
mentioned before, need to be considered. Several power flow  
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algorithms specially designed for distribution systems have 
been proposed in the literature [5]–[13]. 

Some of these methods were developed based on the 
general meshed topology like transmission systems [5]–[9]. 
From those methods, the Gauss implicit -matrix method [7] is 
one of the most commonly used methods; however, this 
method does not explicitly exploit the radial network structure 
of distribution systems and, therefore, requires the solution of 
a set of equations whose size is proportional to the number of 
buses. Recent research proposed some new ideas on how to 
deal with the special topological characteristics of distribution 
systems [10]–[15], but these ideas require new data format or 
some data manipulations. In [10], the authors proposed a 
compensation-based technique to solve distribution power 
flow problems. Branch power flows rather than branch 
currents were later used in the improved version and presented 
in [11]. Since the forward/backward sweep technique was 
adopted in the solution scheme of the compensation-based 
algorithm, new data format and search procedure are 
necessary. Extension of the method, which emphasized on 
modeling unbalanced loads and dispersed generators, was 
proposed in [12]. In [13], the feeder lateral based model was 
adopted, which required the “layer-lateral” based data format. 
One of the main disadvantages of the compensation-based 
methods is that new databases have to be built and maintained. 
In addition, no direct mathematical relationship between the 
system status and control variables can be found, which makes 
the applications of the compensation-based algorithm difficult. 
 The algorithm proposed in this paper is a novel  technique. 
The only input data of this algorithm is the conventional bus-
branch oriented data used by most utilities. The goal of this 
paper is to develop a formulation, which takes advantages of 
the topological characteristics of distribution systems, and 
solve the distribution power flow directly. It means that the 
time-consuming LU decomposition and forward/backward 
substitution of the Jacobian matrix or the Y admittance matrix, 
required in the traditional Newton Raphson and Gauss implicit 
Z matrix algorithms, are not necessary in the new 
development. Two developed matrices, the bus-injection to 
branch-current matrix and the branch-current to bus-voltage 
matrix, and a simple matrix multiplication are utilized to 
obtain power flow solutions. The proposed method is robust 
and very efficient compared to the conventional methods. Test 
results demonstrate the feasibility and validity of the proposed 
method. 
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II. UNBALANCED THREE-PHASE LINE MODEL 

Fig. 1 shows a three-phase line section between bus i and j. 
The line parameters can be obtained by the method developed 
by Carson and Lewis [2]. A 4×4 matrix, which takes into 
account the self and mutual coupling effects of the unbalanced 
threephase line. 

 

 
Fig. 1 Three-phase line section model 

 
A 4×4 matrix, which takes into account the self and mutual 
coupling effects of the unbalanced threephase line section, can 
be expressed as: 
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After Kron’s reduction is applied, the effects of the neutral or 
ground wire are still included in this model as shown in (2) 
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The relationship between bus voltages and branch currents in 
Fig. 1 can be expressed as 
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For any phases failed to present, the corresponding row and 
column in this matrix will contain null-entries. 

III.  ALGORITHM DEVELOPMENT 
The proposed method is developed based on two derived 

matrices, the bus-injection to branch-current matrix and the 
branchcurrent to bus-voltage matrix, and equivalent current 
injections. In this section, the development procedure will be 
described in detail. For distribution networks, the equivalent-
current-injectionbased model is more practical [5]–[13]. For 
bus , the complex load Si is expressed by 

NijQPS iii ...1=+=                            (4) 
And the corresponding equivalent current injection at the -th 
iteration of solution is 
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Where 
k

iV  and are the bus voltage and 
k
iI equivalent current 

injection of bus at the k-th iteration, respectively. 
r
iI and 

i
iI are the real and imaginary parts of the equivalent current 

injection of bus i at the k-th iteration, respectively. 
 

A.  Relationship Matrix Developments 
 

 
Fig. 2 Simple distribution system 

 
 

A simple distribution system shown in Fig. 2 is used as an 
example. The power injections can be converted to the 
equivalent current injections by (5), and the relationship 
between the busmcurrent injections and branch currents can be 
obtained by applying Kirchhoff’s Current Law (KCL) to the 
distribution network. The branch currents can then be 
formulated as functions of equivalent current injections. For 
example, the branch currents B1, B3 and B5, can be expressed 
by equivalent current injections as 
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Therefore, the relationship between the bus current injections 
and branch currents can be expressed as 
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Equation (7a) can be expressed in general form as: 
 

[ ] [ ][ ]IBIBCB =                                  (7b) 
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where BIBC is the bus-injection to branch-current (BIBC) 
matrix. 

The constant BIBC matrix is an upper triangular matrix and 
contains values of 0 and 1 only. 

The relationship between branch currents and bus voltages 
as shown in Fig. 2 can be obtained by (3). For example, the 
voltages of bus 2, 3, and 4 are 
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where Vi is the voltage of bus i, and Zij is the line impedance 
between bus i and bus j. 

Substituting (8a) and (8b) into (8c), (8c) can be rewritten as 
 

34323212114 ZBZBZBVV −−−=                 (9) 
 
From (9), it can be seen that the bus voltage can be expressed 
as a function of branch currents, line parameters, and the 
substation voltage. Similar procedures can be performed on 
other buses; therefore, the relationship between branch 
currents and bus voltages can be expressed as 
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Equation (10a) can be rewritten in general form as: 

 
[ ] [ ][ ]BBCBVV =Δ (10b) 
 
where BCBV is the branch-current to bus-voltage (BCBV) 
matrix. 
 

B.  Building Formulation Development 
Observing (7), a building algorithm for BIBC matrix can be 

developed as follows: 
Step 1) For a distribution system with m-branch section and n-
bus, the dimension of the BIBC matrix is m×(n-1). 
Step 2) If a line section (Bk ) is located between bus i and bus 
j, copy the column of the i-th bus of the BIBC matrix to the 
column of the j-th bus and fill a 1 to the position of the k-th 
row and the j-th bus column. 
Step 3) Repeat procedure (2) until all line sections are 
included in the BIBC matrix. From (10), a building 
algorithm for BCBV matrix can be developed as follows. 
Step 4) For a distribution system with m-branch section and n-
bus, the dimension of the BCBV matrix is (n-1) ×m. 
Step 5) If a line section is located between bus i and bus j , 
copy the row of the i-th bus of the BCBV matrix to the row of 

the j-th bus and fill the line impedance (Zij ) to the position of 
the j-th bus row and the k-th column. 
Step 6) Repeat procedure (5) until all line sections are 
included in the BCBV matrix. 

The algorithm can easily be expanded to a multiphase line 
section or bus. For example, if the line section between bus 
and bus is a three-phase line section, the corresponding branch 
current Bi will be a 3×1 vector and the in the BIBC matrix will 
be a 3×3 identity matrix. Similarly, if the line section between 
bus i and bus j is a three-phase line section, the Zij in the 
BCBV matrix is a 3×3  impedance matrix as shown in (2).  

It can also be seen that the building algorithms of the BIBC 
and BCBV matrices are similar. In fact, these two matrices 
were built in the same subroutine of our test program. 
Therefore, the computation resources needed can be saved. In 
addition, the building algorithms are developed based on the 
traditional bus-branch oriented database; thus, the data 
preparation time can be reduced and the proposed method can 
be easily integrated into the existent DA. 
 

C.   Solution Technique Developments 
The BIBC and BCBV matrices are developed based on the 

topological structure of distribution systems. The BIBC matrix 
represents the relationship between bus current injections and 
branch currents. The corresponding variations at branch 
currents, generated by the variations at bus current injections, 
can be calculated directly by the BIBC matrix. The BCBV 
matrix represents the relationship between branch currents and 
bus voltages. The corresponding variations at bus voltages, 
generated by the variations at branch currents, can be 
calculated directly by the BCBV matrix. Combining (7b) and 
(10b), the relationship between bus current injections and bus 
voltages can be expressed as 
 

[ ] [ ][ ][ ] [ ][ ]IDLFIBIBCBCBVV ==Δ           (11) 
 
And the solution for distribution power flow can be obtained 
by solving (12) iteratively 
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[ ] [ ][ ]kk IDLFV =Δ +1                             (12b) 

[ ] [ ] [ ]101 ++ Δ+= kk VVV                           (12c) 
 

According to the research, the arithmetic operation number 
of LU factorization is approximately proportional to N3. For a 
large value of N, the LU factorization will occupy a large 
portion of the computational time. Therefore, if the LU 
factorization can be avoided, the power flow method can save 
tremendous computational resource. From the solution 
techniques described before, the LU decomposition and 
forward/backward substitution of the Jacobian matrix or the Y 
admittance matrix are no longer necessary for the proposed 
method. Only the DLF matrix is necessary in solving power 
flow problem. Therefore, the proposed method can save 
considerable computation resources and this feature makes the 
proposed method suitable for online operation.   
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V.  TEST RESULTS 
The proposed three-phase power flow algorithm was 

implemented using MATLAB. Two methods are used for tests 
and the convergence tolerance is set at 0.001 p.u. 
Method 1: The forward/backward method [10]. 
Method 2: The proposed algorithm. 
 

A.   Accuracy Comparison 
For any new method, it is important to make sure that the 

final solution of the new method is the same as the existent 
method. An eight-bus system  

 
Fig. 4 Eight-bus distribution system 

 
 

TABLE I 
FINAL CONVERGED VOLTAGE SOLUTIONS 

 
 

TABLE II 
TEST FEEDER 

 
 

TABLE III 
NUMBER OF ITERATION AND NORMALIZED EXECUTION TIME 

 

(equivalent 13-node system), including the three-phase, 
double-phase, and single-phase line sections and buses as 
shown in Fig. 4 is used for comparisons. The final voltage 
solutions of method 1 and method 2 are shown in Table I. 
From Table I, the final converged voltage solutions of method 
2 are very close to the solution of method 1. It means that the 
accuracy of the proposed method is almost the same as the 
commonly used forward/backward method. 
 

B.   Performance Test 
A main feeder trunk with 3x90-phase buses, is used for this 

test. The single and double-phase laterals have been lumped to 
form the unbalanced loads for testing purposes. This trunk is 
then chopped into various sizes for tests as shown in Table II. 
The substation is modeled as the slack bus.  

Table III lists the number of iterations and the normalized 
execution time for both methods. It can be seen that method 2 
is more efficient, especially when the network size increases, 
since the time-consuming processes such as LU factorization 
and forward/backward substitution of –admittance matrix are 
not necessary for method 2. For a 270-node system, method 2 
is almost 24 times faster than method 1. 

 
C.  Robustness Test 
One of the major reasons, which make the power flow 

program diverge, is the ill-condition problem of the Jacobian 
matrix or admittance matrix. It usually occurs when the 
system contains some very short lines or very long lines. In 
order to prove that the proposed method can be utilized in 
severe conditions, IEEE 37-bus test feeder is used [14]. The 
test feeder is adjusted by changing the length of eight line 
sections. Four of them are multiplied by ten, and the other four 
are divided by ten. The test result shows the number of 
iterations for this case is 4 and the execution time is 0.0181 s. 
It means that the proposed method is robust and very suitable 
for online use. 

VI.  DISCUSSION AND CONCLUSION 
In this paper, a direct approach for distribution power flow 

solution was proposed. Two matrices, which are developed 
from the topological characteristics of distribution systems, 
are used to solve power flow problem. The BIBC matrix 
represents the relationship between bus current injections and 
branch currents, and the BCBV matrix represents the 
relationship between branch currents and bus voltages. These 
two matrices are combined to form a direct approach for 
solving power flow problems. The time-consuming 
procedures, such as forward/backward substitution of the 
Jacobian matrix or admittance matrix, are not necessary in the 
proposed method. The ill-conditioned problem that usually 
occurs during the other traditional methods will not occur in 
the proposed solution techniques. Therefore, the proposed 
method is both robust and efficient. Test results show that the 
proposed method is suitable for large-scale distribution 
systems.  
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